

Volume 15, 2018

Accepting Editor: Eli Cohen │ Received: January 16, 2018 │ Revised: March 12, 2018 │
Accepted: March 26, 2018.
Cite as: Mohanarajah, S. (2018). Increasing intrinsic motivation of programming students: Towards fix and play
educational games. Issues in Informing Science and Information Technology, 15, 69-77. https://doi.org/10.28945/4027

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

INCREASING INTRINSIC MOTIVATION
OF PROGRAMMING STUDENTS:

TOWARDS FIX AND PLAY EDUCATIONAL GAMES
Selvarajah Mohanarajah University of North Carolina at

Pembroke, Pembroke, USA
mohanra@uncp.edu

*

ABSTRACT
Aim/Purpose The objective of this research is to investigate the effectiveness of educational

games on learning computer programming. In particular, we are examining
whether allowing students to manipulate the underlying code of the educational
games will increase their intrinsic motivation.

Background Young students are fond of playing digital games. Moreover, they are also inter-
ested in creating game applications. We try to make use of both of these facts.

Methodology A prototype was created to teach the fundamentals of conditional structures. A
number of errors were intentionally included in the game at different stages.
Whenever an error is encountered, students have to stop the game and fix the
bug before proceeding. A pilot study was conducted to evaluate this approach.

Contribution This research investigates a novel approach to teach programming using educa-
tional games. This study is at the initial stage.

Findings Allowing the programming students to manipulate the underlying code of the
educational game they play will increase their intrinsic motivation.

Recommendations
for Practitioners

Creating educational games to teach programming, and systematically allowing
the players to manipulate the gaming logic, will be beneficial to the students.

Recommendation
for Researchers

This research can be extended to investigate how various artificial intelligence
techniques can be used to model the gamers, for example, skill level.

Impact on Society The future generations of students should be able to use digital technologies
proficiently. In addition, they should also be able to understand and modify the
underlying code in the digital things (like Internet of Things).This research at-
tempts to alleviate the disenchantment associated with learning coding.

https://doi.org/10.28945/4027
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:mohanra@uncp.edu

Increasing Intrinsic Motivation of Programming Students using Games

70

Future Research A full scale evaluation – including objective evaluation using game scores – will
be conducted. One-way MANOVA will be used to analyze the efficacy of the
proposed intervention on the students’ performance, and their intrinsic motiva-
tion and flow experience.

Keywords educational games, games based learning, learning programming

INTRODUCTION
Today, digital technology plays a key role in our daily lives. Even the kids’ toys are becoming more
and more digital and some of them are programmable. The future generations of students should be
able to use digital technologies proficiently. In addition, they should also be able to understand and
modify the underlying computer programs. Organizations such as ACM and code.org are promoting
fundamental computer science education at k-12 level. The former US president Barack Obama de-
livered a message in which he encouraged young students to learn computer programming. He said,
“Now we have to make sure all our kids are equipped for the jobs of the future – which means not
just being able to work with computers, but developing the analytical and coding skills to power our
innovation economy. In the new economy, computer science isn’t an optional skill – it’s a basic skill,
right along with the three ‘R’s (reading, writing and arithmetic)” (Obama, 2017). The U.S Bureau of
Labor Statistics shows that the demand for software developers grows by 28% to 32% by 2020. The
above mentioned factors could extrinsically motivate students to learn computer programming. Ac-
cording to the 2016 CRA-Taulbee Report (CRA - Taulbie Survey, 2016), the number of new under-
graduate computing majors has been steadily increasing for the past seven years.

Nevertheless, there is a major obstacle that needs to be addressed; learning computer programming is
considered challenging, and beginning students are easily frustrated and become bored (Koulouri,
Lauria, & Macredie, 2014). Even the students who were initially enthusiastic about computer pro-
graming with the hope of creating cool computer games and innovative mobile applications, later
reported that programming was tiresome and challenging (Beaubouef & Mason, 2005). In order to
alleviate this disenchantment, we are focusing on using educational games to intrinsically motivate the
beginner programing students by entertaining as well as challenging appropriately.

One of the surveys conducted by PEW Research Center revealed that, nearly 70% of the college
students played video, computer or online games in 2015 (PEW, 2013). Not surprisingly, the above
survey also reported that most of the student gamers had positive feelings about gaming, such as
“pleasant”, “exciting”, and/or “challenging”. Interestingly, other surveys conducted by Entertain-
ment Software Association (ESA, 2015) and PEW (PEW, 2015) reveal that girls play equally as boys.
In this research, we are trying to take advantage of the above facts in order to design a strategy that
utilizes fix-and-play educational games to increase the intrinsic motivation of the students while
learning computer programming.

RESEARCH QUESTION
The central hypothesis of this research is that empowering beginner programming students to ma-
nipulate the digital games they play will significantly increase the student’s intrinsic motivation and
performance.

PAST RESEARCH
For more than four decades, computer science educators have been extensively investigating the chal-
lenges faced by novice programmers. The seminal book edited by Soloway and Spohrer (1989) in late
eighties includes a wide-ranging collection of articles that documented very early research activities
on learning programming. In 2013, Robins, Rountree, and Rountree (2003) published a comprehen-

Mohanarajah

71

sive review of the research relating to teaching and learning programming. Kelleher and Pausch
(2005) provide taxonomy of languages and/or environments that were designed to support learning
programming. According to them, most of the systems either try to simplify the mechanics of pro-
gramming or try to support the learners (e.g., by providing social and collaborative environments
and/or entertaining/ motivating environments using Robots, Games, Videos etc.).

PROGRAMMING ENVIRONMENTS, TOOLS AND LANGUAGES
Notable approaches that attempt to alleviate programming difficulties include ITS: Intelligent Tutor-
ing Systems (e.g. LISP-Tutor (Anderson & Reiser, 1985)), Algorithm Animation (software visualiza-
tion, e.g., JELIOT-3 (Moreno, Sutinen, & Joy, 2014)), Simplified Languages or Scaffolding (e.g., BlueJ
(Kölling & Patterson, 2003)), Syntax-free Block-based drag-and-drop programming (e.g., AppInven-
tor (Turbak, Sherman, Martin, Wolber, & Pokress, 2014)), Visual Immediate Feedback approach (e.g.,
Real or Simulated Robots, Animation) (McWhorter & O’Connor, 2009; Pattis, 1981).

INTELLIGENT TUTORING SYSTEMS (E.G., LISP TUTOR)
Anderson and Reiser (1985) reported that students who received private tutoring learned LISP nearly
four times faster than students who did not learn from private tutors. However, providing adequate
one-on-one tutoring for all students is impractical in educational institutions. In this situation, intelli-
gent tutoring systems (ITSs) can play a key role because they can be used for learning at any time, at
any pace. However, research shows that designing ITSs is very challenging for complex disciplines
such as programming (Dadic, 2011).

SOFTWARE /PROGRAM/ ALGORITHM VISUALIZATION (E.G., JELIOT (Moreno,
Sutinen, & Joy, 2014))
Programming is an abstract and dynamic activity. Algorithm visualization (AV) techniques try to visu-
alize the effects of each line of the code. This can help the student to formulate a mental model of
how the program will be executed in a complex digital environment (Du Boulay, O’Shea, & Monk,
1981) . Research shows that AV alone is not enough to support learning programming (Pears, et al.,
2007).

SIMPLIFIED OR SCAFFOLDED LANGUAGES (E.G., KAREL (Pattis, 1981), BLUEJ
(Kölling & Patterson, 2003))
Many universities adopt industry level programming languages such as Java and C++ in their CS1
courses. These languages include many complex features that are valuable for professionals but
dreadful for novices. A number of studies have attempted to address this problem by using scaffold-
ing techniques to hide the undesired complexities (Kölling & Patterson, 2003), or designed simple
mini languages for teaching purposes only (Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, &
Miller, 1997).

SYNTAX-FREE, BLOCK-BASED DRAG-AND-DROP ENVIRONMENTS (E.G.,
APPINVENTER (Turbak, Sherman, Martin, Wolber, & Pokress, 2014))
After devising a solution for a problem, the next challenge is expressing the solution in a program-
ming language. The popular programming languages have unusual syntax and complex semantics.
Drag-and-Drop programming environments like Alice and AppInventor (Turbak, Sherman, Martin,
Wolber, & Pokress, 2014) are designed to overcome these challenges.

Increasing Intrinsic Motivation of Programming Students using Games

72

CONSTRUCT AND REVIEW- IMMEDIATE VISUAL FEEDBACK SYSTEMS (E.G.,
ROBOTICS E.G. LEGO (McWhorter & O’Connor, 2009)), GAMES (E.G.
GAME2LEARN (Barnes, Richter, Powell, & Chaffin, 2007))
In this approach, beginning learners are encouraged to participate in some creative activity. For ex-
ample, students might be challenged to write code to control a robot (e.g., Karel the Robot, Pattis,
1981) or to create simple digital games (e.g., Barnes & Lipford, 2008).

EDUCATIONAL GAMES FOR LEARNING PROGRAMMING (E.G., CEEBOT)
There are a few research reported related to educational games for learning programming or algo-
rithm design. Shabalina and Pavel Vorobkalov (2008) discuss an industry level commercial game for
learning C#, where the game engine Ogre3D is used with extended game logic. Kahn (1999) de-
scribes an interactive puzzle game to teach ToonTalk, which is intended to be a visual programming
tool. We found another web based educational game for learning programming CeeBot (CeeBot4,
n.d.). To the knowledge of the authors none of the above mentioned games were seriously used by
novice learners.

LIMITATIONS
The limitations of the above mentioned approaches have been extensively discussed in the literature.
For example, ITS utilizes AI techniques in order to provide appropriate course sequencing and feed-
back tailored to individual learners. A student can also study at his/her own pace. There are some
ITSs for learning programming reported in the literature, but none of them are used for real learning
(Robins et al., 2003). Designing an ITS for complex disciplines like programming is very challenging.
Algorithm Animation techniques are used to help the students to ease the burden of abstraction- to
visualize how the algorithm will be executed on a notional machine. AA is more suitable for interme-
diate, motivated learners than novices (Pears, et al., 2007).

Simplified languages and block based language environments avoid unnecessary complexities associ-
ate with industry level languages like Java or C++. Pappert (1980) mentioned that the programming
languages should be simple and entertaining to learn (“low floor”) but also should be powerful
enough to challenge (“high ceilings”). The languages like Alice, Scratch and AppInventor are created
based on this principle. They allow the novice learner to build problem solving skills without hin-
dered by the complexities of syntax and semantics of an implementation environment. However,
research shows that these environments do not scale-up to large, real programming problems
(Ragonis & Ben-Ari, 2005).

WHY LEARNING PROGRAMMING IS CHALLENGING
In May 2015, Robins (2015) mentioned “After several decades of research on the core topic of pro-
gramming, ---, we still don’t have a consensus on the reasons why so many novice programmers fail
to learn,..” Nevertheless, based on the past researches discussed above, we may conclude that learn-
ing programming requires at least three key skills:

• able to abstract a problem and construct a step-by-step solution for a particular environment
• able to understand the semantic structures of a programming language and choose the ap-

propriate structure to design the solution
• able to use the correct syntax to implement the design on the given environment

Learning programming is challenging for beginners as they have to develop the skills necessary to
design a solution for a given problem so that it can be implemented in a particular computer envi-
ronment. The novices struggle to create the appropriate mental model of the computer environment
in which their solution need to be implemented. The only closed analogy a beginner can think of is a

Mohanarajah

73

person working on a set of natural language instructions. Du Boulay, O’Shea, and Monk (1981)
coined a term notational machine to denote the required mental model for a programmer (an ab-
straction of the relevant hardware, operating system and the programming language). In addition,
trial-and-error type of learning will be very frustrating for beginners as identifying the type of error
and isolating the cause of the error may require all three types of skills simultaneously.

OUR APPROACH
The proposed research is built on etymological constructivism (Ben-Ari, 2001), self-determination
theory (Ryan & Deci, 2000b), and flow theory (Csikszentmihályi, 2008). According to constructivism
(Ben-Ari, 2001), learning environments should help the students to build their own knowledge by
motivating them to actively engage in some meaningful and creative activities. In our approach, the
amendable gaming environment motivates the students to build their knowledge by actively engaging
them in enjoyable creative endeavors. The challenges immersed in the game will be exciting and
achievable. The activities will neither be too hard (reduce anxiety) nor too easy (reduce boredom).
Students should be able to tackle the challenges with an appropriate level of help from mentors.

One of the reasons for the higher student drop-out from the programming courses is reported as
lack of intrinsic motivation (Bergin & Reilly, 2005) . Research shows that intrinsic motivation plays
important role in student’s engagement on an activity; on the other hand, self-efficacy has positive
impact on intrinsic motivation (Ryan & Deci, 2000a). Intrinsic motivation refers to the engagement
in an activity mainly for pleasure and satisfaction. Self-efficacy is defined as students’ beliefs about
their capabilities to perform certain tasks. In this study, we are investigating a unique approach that
could maintain the intrinsic motivation of the students towards learning programming by keeping
their self-efficacy level high.

Digital games are written in computer programs. This gives a unique advantage when designing edu-
cational games for learning programming. The game program can be exposed to the learners and
they could be encouraged and empowered to examine the code, modify the logic, and see the effect
of their actions immediately. In this research, we use casual games for investigation. Casual games
are easy to learn and play. A number of bugs will be integrated in a game seamlessly. While playing,
students will be challenged to fix the bugs that they come across. The bug-fixing action will be per-
ceived as part of the game and not as an annoying interruption. To fix a bug, students should first
inspect the code and understand the flaw. By doing this, we believe that the students will get a sense
of ownership on the game they play, and in turn, their self-efficacy level will be increased. As a result,
intrinsic motivation of the students will be increased and they will continuously be engaged in play-
ing the game while learning the relevant programming concepts. We believe that this feature is stimu-
lating and exciting.

PROTOTYPE, PILOT STUDY AND CONCLUSION
We created a prototype for a simple first-person shooting game to teach the fundamentals of condi-
tional structures (Figure 1). The prototype was implemented in Java. There were many logical errors
included in the program. For example, according to the given instructions, pressing the Left arrow
should move the Gun to left- but the Gun will move to right. At this point, the players should stop
the game and fix the error (see Figure 2). A pilot study was conducted with the help of seven student
volunteers who had completed a first year programming course (CS1). The executable game was giv-
en to the students to play and learn. After playing, the students were asked to complete a five-point
Likert style questionnaire. The questionnaire consists of eight questions and a comment section. The
prototype is not even close to a simple industry level game. However, five students indicated that
they prefer to play the game for revising conditional branching than using text-based revision materi-
als. Instead of just playing the game students were also requested to fix many errors in the game.
Four students stated that they felt some sort of pleasure and pride since they were able to fix the er-
rors while playing the game. Note that, this is only a pilot study and the sample size is too small and

Increasing Intrinsic Motivation of Programming Students using Games

74

not randomized. The effectiveness of interventions cannot be generalized to general population.
However, based on the results, it can be concluded that there is a possibility that allowing the pro-
gramming students to manipulate the underlying code of the educational game they play will increase
their intrinsic motivation. The game program will be improved and a full-scale study will be conduct-
ed. The next section will describe the future plan in detail.

Figure 1: A Simple Shooting Game

Figure 2: Fix and Play Games - Opening Game Program Logic to Gamers

Mohanarajah

75

FUTURE RESEARCH
In future, different types of casual games will be developed to learn different topics in computer
programming, and a full scale evaluation including objective evaluation using game scores will be
conducted. This research will follow the principles outlined in the US Department of Education’s
Common Guidelines for Education and Research (Institute of Education, 2013). Initially, two small
educational games will be created as described before. The games will be used as revision material for
learning two concepts; conditional branching and looping. We will also create identical, but text-
based revision materials. CS1 courses are taught in fall and spring at University of Pembroke. Two
sections, each semester, enrolls around 50 students in total. One section will be randomly selected to
receive the game-based revision material, and the other will receive the text-based revision materials.
A five-point scale Likert-style questionnaire (based on (Jackson & Eklund, 2004)) will be created to
measure intrinsic motivation and flow experience of the students.

Data analysis will be conducted based on the guidelines in Kesselman et al (1998). A pre- and post-
test will be given before and after the revision materials are used. At the end, all participants will be
asked to complete the questionnaire. The reliability of the questionnaire will be measured using
Cronbach’s alpha. One-way MANOVA will be used to analyze the efficacy of the proposed interven-
tion on the students’ performance, and their intrinsic motivation and flow experience. The sample
sizes may be different. A priori analysis will be conducted to verify existence of multivariate outliers,
normality condition, and homogeneity of covariance. Power and Effect size analysis will be reported

Playing digital games requires some other skills such as eye-hand coordination. An experienced gam-
er has definite advantage over a student with poor gaming skills. To overcome this problem, we will
also investigate how the players can be modelled using some AI techniques (such as Bayesian net-
work and Fuzzy Logic).

REFERENCES
Anderson, R., & Reiser, B. (1985). LISP Tutor. Byte, 159-175.
Barnes, T., & Lipford, H. (2008). Game2Learn: Improving the Motivation os CS1 students. ACM Game

Development in Computer Science Education. Miami, Florida. https://doi.org/10.1145/1463673.1463674

Barnes, T., Richter, H., Powell, E., & Chaffin, A. G. (2007). Game2Learn: Fuilding CS1 learning games for
retention. SIGCSE Bulletin, 39(3), 121-125. https://doi.org/10.1145/1269900.1268821

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: Some thoughts
and observations. ACM SIGCSE Bulletin, 37(2), 103-106. https://doi.org/10.1145/1083431.1083474

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Education, 20(1), 45-
73.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort leval in learning programming.
Proceedings of the 17th Workshop of the Psychology of Programming Interest Group, PPIG '05. University of Sussex,
Brighton, UK.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages: A way to
learn programming principles. Education and Information Technologies, 2(1), 65-83.
https://doi.org/10.1023/A:1018636507883

CeeBot4. (n.d.). Learn programming with Ceebot. Retrieved 1 24, 2017, from
http://www.ceebot.org/index.php?option=com_content&task=view&id=9&Itemid=52

CRA – Taulbie Survey. (2016). CRA - Taulbie survey. Computer Research Association. Retrieved from
http://cra.org/crn/wp-content/uploads/sites/7/2017/05/2016-Taulbee-Survey.pdf

Csikszentmihályi, M. (2008). Flow: The psychology of optimal experience. Harper Perennial Modern Classics.

https://doi.org/10.1145/1463673.1463674
https://doi.org/10.1145/1269900.1268821
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1023/A:1018636507883
http://www.ceebot.org/index.php?option=com_content&task=view&id=9&Itemid=52
http://cra.org/crn/wp-content/uploads/sites/7/2017/05/2016-Taulbee-Survey.pdf

Increasing Intrinsic Motivation of Programming Students using Games

76

Dadic, T. (2011). Intelligent tutoring systems for programming. In S. Stankov, V. Glavinic, & M. Rosic (Eds.),
Intelligent tutoring systems in e-learning environments (pp. 166-186). Croatia: IGI Global.
https://doi.org/10.4018/978-1-61692-008-1.ch009

Du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: Presenting computing. Interna-
tional Journal of Man-Machine Studies, 14(3), 237-249.

ESA. (2015). Essential facts about the computer and video game industry. Entertainment Software Association. Re-
trieved from http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf

Institute of Education. (2013). Common guidelines for education and research. US Department of Education & NSF.

Jackson, R., & Eklund, S. A. (2004). The flow scales manual. Morganstown, WV: Fitness Education Technology.

Kahn, K. (1999). A computer game to teach programming. National Educational Computing Conference.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137.
https://doi.org/10.1145/1089733.1089734

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., . . . Levin, J. R. (1998).
Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA
analyses. Review of Educational Research, 68(3), 350-386. https://doi.org/10.3102/00346543068003350

Kölling, Q., & Patterson, R. (2003). The BlueJ system and its pedagogy. Journal of Computer Science, 4, 13.

Koulouri, T., Lauria, S., & Macredie, R. D. (2014). Teaching introductory programming: A quantitative
evaluation of different approaches. ACM Transactions on Computing Education, 14(4), 1-28.
https://doi.org/10.1145/2662412

McWhorter, W., & O’Connor, B. (2009). Do LEGO mindstorms motivate students in CS1? ACM Technical
Symposium on Computer Science Education. TN. https://doi.org/10.1145/1508865.1509019

Moreno, A., Sutinen, E., & Joy, M. (2014). Defining and evaluating conflictive animations for programming
education: The case of Jeliot ConAn. ACM Technical Symposium on Computer Science Education (SIGCSE '14). ,
629-634. https://doi.org/10.1145/2538862.2538888

Obama, B. (2017, January 30). Computer science for all. Retrieved from White House:
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

Pappert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Pattis, R. E. (1981). Karel the robot: A gentle introduction to the art of programming with Pascal. NY: John Wiley and
Sons.

Pears, A., Seidman, S., Malm, L., L. M., Adams, E., Bennedsen, J., . . . Paterson, J. (2007). A survey of literature
on the teaching of intro-ductory programming . SIGCSE Bulletin, 39(4), 204-223.
https://doi.org/10.1145/1345375.1345441

PEW. (2013). Internet & American life: Let the games begin. Retrieved 9 22, 2017, from
http://www.pewinternet.org/2003/07/06/let-the-games-begin-gaming-technology-and-college-students/

PEW. (2015). Games and gamers. Retrieved 2017, from http://www.pewinternet.org/2015/12/15/gaming-and-
gamers/

Ragonis, N., & Ben-Ari, M. (2005). On understanding the statics and dynamics of object-oriented programs.
ACM SIGCSE Bulletin, 37(1).

Robins, A. (2015). Editorial. Computer Science Education, 25(2), 115-119.
https://doi.org/10.1080/08993408.2015.1034350

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming : A review and discussion.
Computer Science Education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions.
Contemporary Educational Psychology, 25, 54-67. https://doi.org/10.1006/ceps.1999.1020

https://doi.org/10.4018/978-1-61692-008-1.ch009
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.3102/00346543068003350
https://doi.org/10.1145/2662412
https://doi.org/10.1145/1508865.1509019
https://doi.org/10.1145/2538862.2538888
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1145/1345375.1345441
http://www.pewinternet.org/2003/07/06/let-the-games-begin-gaming-technology-and-college-students/
http://www.pewinternet.org/2015/12/15/gaming-and-gamers/
http://www.pewinternet.org/2015/12/15/gaming-and-gamers/
https://doi.org/10.1080/08993408.2015.1034350
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1006/ceps.1999.1020

Mohanarajah

77

Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of intrinsic motivation, social
development, and well-being. American Psychologist, 55, 68-78. https://doi.org/10.1037/0003-066X.55.1.68

Shabalina, O., & Pavel Vorobkalov, A. K. (2008). Educational games for learning programming. International Book
Series : Information Science and Computing.

Soloway, E., & Spohrer, J. (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum.

Turbak, F., Sherman, M., Martin, F., Wolber, D., & Pokress, S. C. (2014). Events-first programming in App
Inventor. Journal of Computing Sciences in Colleges, 29(6), 81-89.

BIOGRAPHY
Selvarajah (Mohan) Mohanarajah is an Associate Professor at Univer-
sity of North Carolina at Pembroke, NC, USA. His research interests
include AI in Computer Science Education, Educational Games, Cyber
Security and Big Data. Mohan can be reached at mohanara@uncp.edu

https://doi.org/10.1037/0003-066X.55.1.68
mailto:mohanara@uncp.edu

	Increasing Intrinsic Motivation of Programming Students: Towards Fix and Play Educational Games
	Abstract
	Introduction
	Research Question

	Past Research
	Programming Environments, Tools and Languages
	Intelligent Tutoring Systems (e.g., LISP TUTOR)
	Software /Program/ Algorithm Visualization (e.g., Jeliot (Moreno, Sutinen, & Joy, 2014))
	Simplified or Scaffolded Languages (e.g., Karel (Pattis, 1981), BlueJ (Kölling & Patterson, 2003))
	Syntax-free, Block-based Drag-and-Drop Environments (e.g., AppInventer (Turbak, Sherman, Martin, Wolber, & Pokress, 2014))
	Construct and Review- Immediate Visual Feedback Systems (e.g., Robotics e.g. LEGO (McWhorter & O’Connor, 2009)), Games (e.g. Game2Learn (Barnes, Richter, Powell, & Chaffin, 2007))
	Educational Games for Learning Programming (E.G., CEEBOT)
	Limitations

	Why Learning Programming Is Challenging
	Our Approach
	Prototype, Pilot Study and Conclusion
	Future Research
	References
	Biography

